<< Back to previous view

[CLJ-1620] Constants are leaked in case of a reentrant eval Created: 18/Dec/14  Updated: 19/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.7
Fix Version/s: None

Type: Defect Priority: Critical
Reporter: Christophe Grand Assignee: Unassigned
Resolution: Unresolved Votes: 3
Labels: aot, compiler

Attachments: Text File 0001-CLJ-1620-avoid-constants-leak-in-static-initalizer.patch     Text File 0001-CLJ-1620-avoid-constants-leak-in-static-initalizer-v2.patch     Text File eval-bindings.patch    
Patch: Code
Approval: Triaged


Compiling a function that references a non loaded (or unitialized) class triggers its init static. When the init static loads clojure code, some constants (source code I think) are leaked into the constants pool of the function under compilation.

It prevented CCW from working in some environments (Rational) because the static init of the resulting function was over 64K.

Steps to reproduce:

Load the leak.main ns and run the code in comments: the first function has 15 extra fiels despite being identical to the second one.

(ns leak.main)

(defn first-to-load []

(defn second-to-load []

=> (map (comp count #(.getFields %) class) [first-to-load second-to-load])
(16 1)
package leak;
import clojure.lang.IFn;
import clojure.lang.RT;
import clojure.lang.Symbol;
public class Klass {
  static {
    RT.var("clojure.core", "require").invoke(Symbol.intern("leak.leaky"));
  public static IFn foo = RT.var("leak.leaky", "foo");
(ns leak.leaky)

(defn foo
  "Some doc"

(def unrelated 42)


Comment by Christophe Grand [ 18/Dec/14 3:56 PM ]

Patch from Nicola Mometto

Comment by Nicola Mometto [ 18/Dec/14 4:01 PM ]

Attached the same patch with a more informative better commit message

Comment by Laurent Petit [ 18/Dec/14 4:03 PM ]

I'd like to thank Christophe and Alex for their invaluable help in understanding what was happening, formulating the right hypothesis and then finding a fix.

I would also mention that even if non IBM rational environments where not affected by the bug to the point were CCW would not work, they were still affected. For instance the class for a one-liner function wrapping an interop call weighs 700bytes once the patch is applied, when it weighed 90kbytes with current 1.6 or 1.7.

Comment by Laurent Petit [ 18/Dec/14 5:07 PM ]

In CCW for the initial problematic function, the -v2 patch produces exactly the same bytecode as if the referenced class does not load any namespace in its static initializers.
That is, the patch is valid. I will test it live in the IBM Rational environment ASAP.

Comment by Laurent Petit [ 19/Dec/14 12:10 AM ]

I confirm the patch fixes the issue detected initially in the IBM Rational environment

[CLJ-1610] Unrolled small maps Created: 08/Dec/14  Updated: 08/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.6
Fix Version/s: Release 1.8

Type: Enhancement Priority: Critical
Reporter: Alex Miller Assignee: Zach Tellman
Resolution: Unresolved Votes: 1
Labels: collections

Approval: Vetted


Placeholder for unrolled small maps enhancement (companion for vectors at CLJ-1517).

[CLJ-1546] Widen vec to take Iterable/IReduce Created: 02/Oct/14  Updated: 16/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.7
Fix Version/s: Release 1.7

Type: Enhancement Priority: Critical
Reporter: Alex Miller Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: None

Attachments: PNG File benchmark.png     Text File clj-1546-2.patch     Text File clj-1546-3.patch     Text File clj-1546-4.patch     Text File clj-1546-5.patch     Text File clj-1546.patch    
Patch: Code and Test
Approval: Vetted


These examples should work but do not:

Something Iterable but not IReduce:

user> (def i (eduction (map inc) (range 100)))
user> (instance? java.util.Collection i)
user> (instance? Iterable i)
user> (vec i)
RuntimeException Unable to convert: class clojure.core.Iteration to Object[]

Something IReduceInit but not Iterable:

user=> (vec
  (reify clojure.lang.IReduceInit
    (reduce [_ f start]
      (reduce f start (range 10)))))
RuntimeException Unable to convert: class user$reify__15 to Object[]

Proposal: Add PersistentVector.create(Iterable) and PersistentVector.create(IReduceInit) to efficiently create PVs from those.

For performance, vec has several cases:
1) (vec) if vector?: return new vector w/o meta - this matches prior behavior but has a constant cost of a few ns, rather than linear cost. If not a vector, spill to LazilyPersistentVector.create(Object).

2) (LPV) instanceof IReduceInit: Anything reducible can reduce itself fastest. Right now this has a big benefit for PersistentList. on 1.7.0-alpha4 with list of size 1024, into=28 seconds, vec=18 seconds. After patch, vec=7 seconds. If maps, sets, and range were IReduce later they would also use this path and see noticeable boosts. This is also the branch that will handle the Eduction and IReduceInit cases added in the patch.

3) (LPV) instanceof ISeq: If the coll is a sequence already, best to walk it rather than build an iterator or array from it. This calls into PersistentVector.create(ISeq). That implementation now contains an optimization to build into an array and construct the PersistentVector directly from the array for sequences <= 32 elements (which is most common). Once that threshold is reached, it switches to building with transients. The benchmark shows that the patch makes vec substantially faster for all seqs and even faster than into in some cases.

4) (LPV) instanceof Iterable: For all non-Clojure collections (ArrayList) and current non-IReduce Clojure collections (PHM, PHS), this is fastest path. Iterators are preferred to seqs as they do not cache or hold onto the values as they go by. The PV.create() for Iterable uses transients. Due to slightly more overhead, small maps and sets are slightly slower but this would be fixed by CLJ-1499 and/or making PHM/PHS IReduceInit.

5) (LPV) otherwise RT.toArray(): catches Map, String, Object[], primitive array, etc. The important ones here are the arrays - they are slightly slower on small arrays due to overhead of checking more cases above, but big arrays are significantly faster than they were.

In addition, there was one hard-coded path in the Compiler into PersistentVector.create() and I re-routed that through LazilyPersistentVector instead as that code is now the place to choose the fastest path logic.

Patch: clj-1546-5.patch

Screened by:

Comment by Timothy Baldridge [ 02/Oct/14 9:44 AM ]

Is there a reason the final case for (vec something) can't just be a call to (into [] coll)? It seems a bit odd to do (to-array) on anything thats not a java collection or Iterable, when we have IReduce.

Comment by Rich Hickey [ 02/Oct/14 10:02 AM ]

re: Tim - yes, this needs to support IReduce (and thereby educe) as well

Comment by Alex Miller [ 14/Oct/14 9:56 AM ]

Added new patch that handles Iterable and IReduceInit in vec. It also makes calling with a vector much faster due to the first check. into is still faster for chunked seqs (due to special InternalReduce handling of chunking).

It would be possible to move more of the variant checking into LazilyPersistentVector or PersistentVector so it could be used in more contexts. I'm not sure how much to do with that.

It would also be possible to instead lean on reduce more from the Java side if there was a Java version of reduce (as defined in mikera's branch for http://dev.clojure.org/jira/browse/CLJ-1192 at https://github.com/mikera/clojure/compare/clj-1192-vec-performance. Something like that is the only way I can see of leveraging that same InternalReduce logic that makes into faster than vec.

Comment by Alex Miller [ 13/Nov/14 4:14 PM ]

Prior comments from Stu removed from description: "Open Question: Which branch should come first, Collection or IReduceInit? Collection reaches the fast path for small collections through LazilyPersistentVector, but IReduceInit should be faster for larger things. Related: Shouldn't the item count in LazilyPersistentVector be a bounded count?"

I have attached a new patch that simplifies the impl to do it in LazilyPersistentVector instead of in vec, which was easier due to "and" not being able yet when vec is implemented to do the length check.

I have also done a considerable amount of analysis on the matrix of incoming collections and best path to follow and also collected some data on what collections are commonly passed into vec. The current patch reflects those findings. Some highlights:

  • vec is called with PersistentVector in all projects I tested. The instanceof check takes that case from typically 100s of nanos to ~5 ns. So I do think it is worth doing.
  • vec is overwhelmingly called with small collections - in most cases the incoming collection is <10 elements. In cases where the collection is not a sequence, the path of creating the Vector with an owning array is the fastest option, beating even IReduce and transient building (as that path has some checks involved).
  • PersistentList is the only IReduce likely to be encountered by vec right now and adding that branch is a significant performance boost from prior impl and vs into. If maps and sets were IReduce, they would gain this as well.
  • chunked seqs will be significantly faster with into than vec as into goes through CollReduce and can leverage many optimizations on reducing through chunks that are not available to vec.
  • seqs in general though are now faster with vec than they were due to leveraging transients.
  • eduction results support IReduce and are also faster with vec than into.
  • range is currently slower with vec, but when range is IReduce, it will probably be faster with vec

In summary, some new conventional wisdom (after this patch) on (into []) vs vec:

  • vec is faster if passed a vector, an IReduce, or an array
  • into is faster when working with seqs, but even vec is better than it used to be and may even be faster for things like range in the future
Comment by Michael Blume [ 13/Nov/14 7:24 PM ]

Latest patch won't build for me when applied to master

     [java] Exception in thread "main" java.lang.ExceptionInInitializerError
     [java] 	at clojure.lang.Compile.<clinit>(Compile.java:29)
     [java] Caused by: java.lang.NoSuchMethodError: clojure.lang.LazilyPersistentVector.create(Ljava/util/Collection;)Lclojure/lang/IPersistentVector;, compiling:(clojure/core.clj:14:23)
     [java] 	at clojure.lang.Compiler.load(Compiler.java:7206)
     [java] 	at clojure.lang.RT.loadResourceScript(RT.java:370)
     [java] 	at clojure.lang.RT.loadResourceScript(RT.java:361)
     [java] 	at clojure.lang.RT.load(RT.java:440)
     [java] 	at clojure.lang.RT.load(RT.java:411)
     [java] 	at clojure.lang.RT.doInit(RT.java:448)
     [java] 	at clojure.lang.RT.<clinit>(RT.java:329)
     [java] 	... 1 more
     [java] Caused by: java.lang.NoSuchMethodError: clojure.lang.LazilyPersistentVector.create(Ljava/util/Collection;)Lclojure/lang/IPersistentVector;
     [java] 	at clojure.lang.LispReader$VectorReader.invoke(LispReader.java:1073)
     [java] 	at clojure.lang.LispReader.readDelimitedList(LispReader.java:1138)
     [java] 	at clojure.lang.LispReader$ListReader.invoke(LispReader.java:972)
     [java] 	at clojure.lang.LispReader.read(LispReader.java:183)
     [java] 	at clojure.lang.LispReader$WrappingReader.invoke(LispReader.java:535)
     [java] 	at clojure.lang.LispReader.readDelimitedList(LispReader.java:1138)
     [java] 	at clojure.lang.LispReader$MapReader.invoke(LispReader.java:1081)
     [java] 	at clojure.lang.LispReader.read(LispReader.java:183)
     [java] 	at clojure.lang.LispReader$MetaReader.invoke(LispReader.java:716)
     [java] 	at clojure.lang.LispReader.readDelimitedList(LispReader.java:1138)
     [java] 	at clojure.lang.LispReader$ListReader.invoke(LispReader.java:972)
     [java] 	at clojure.lang.LispReader.read(LispReader.java:183)
     [java] 	at clojure.lang.Compiler.load(Compiler.java:7190)
     [java] 	... 7 more
Comment by Alex Miller [ 13/Nov/14 7:28 PM ]

Did you clean first? I replaced that static method call there with a wider version but if you are cleaning fresh it should be fine.

Comment by Michael Blume [ 13/Nov/14 7:31 PM ]

Apologies, maven just wasn't doing a good job of tracking changes, running mvn clean fixes the build.

Comment by Alex Miller [ 25/Nov/14 9:58 AM ]

Added benchmark.png showing times (in ns), tested with criterium, for into and vec on different types and sizes on 1.7.0-alpha4 and then vec again after the patch.

[CLJ-1544] AOT bug involving namespaces loaded before AOT compilation started Created: 01/Oct/14  Updated: 17/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: None
Fix Version/s: Release 1.7

Type: Defect Priority: Critical
Reporter: Allen Rohner Assignee: Unassigned
Resolution: Unresolved Votes: 4
Labels: aot

Attachments: Text File 0001-CLJ-1544-force-reloading-of-namespaces-during-AOT-co.patch     Text File 0001-CLJ-1544-force-reloading-of-namespaces-during-AOT-co-v2.patch    
Patch: Code
Approval: Vetted


If namespace "a" that is being AOT compiled requires a namespace "b" that has been loaded but not AOT compiled, the classfile for that namespace will never be emitted on disk, causing errors when compiling uberjars or in other cases.

A minimal reproducible case is described in the following comment: http://dev.clojure.org/jira/browse/CLJ-1544?focusedCommentId=36734&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-36734

Other examples of the bug:

A real issue triggered by this bug: https://github.com/cemerick/austin/issues/23

Approach: The approach taken by the attached patch is to force reloading of namespaces during AOT compilation if no matching classfile is found in the compile-path or in the classpath

Comment by Alex Miller [ 04/Dec/14 12:45 PM ]

Possibly related: CLJ-1457

Comment by Nicola Mometto [ 05/Dec/14 4:51 AM ]

Has anyone been able to reproduce this bug from a bare clojure repl? I have been trying to take lein out of the equation for an hour but I don't seem to be able to reproduce it – this makes me think that it's possible that this is a lein/classlojure/nrepl issue rather than a compiler/classloader bug

Comment by Nicola Mometto [ 06/Dec/14 4:20 PM ]

I was actually able to reproduce and understand this bug thanks to a minimal example reduced from a testcase for CLJ-1413.

>cat error.sh

rm -rf target && mkdir target

java -cp src:clojure.jar clojure.main - <<EOF
(require 'myrecord)
(set! *compile-path* "target")
(compile 'core)

java -cp target:clojure.jar clojure.main -e "(use 'core)"

> cat src/core.clj
(in-ns 'core)
(clojure.core/require 'myrecord)
(clojure.core/import myrecord.somerecord)

>cat src/myrecord.clj
(in-ns 'myrecord)
(clojure.core/defrecord somerecord [])

> ./error.sh
Exception in thread "main" java.lang.ExceptionInInitializerError
	at java.lang.Class.forName0(Native Method)
	at java.lang.Class.forName(Class.java:344)
	at clojure.lang.RT.classForName(RT.java:2113)
	at clojure.lang.RT.classForName(RT.java:2122)
	at clojure.lang.RT.loadClassForName(RT.java:2141)
	at clojure.lang.RT.load(RT.java:430)
	at clojure.lang.RT.load(RT.java:411)
	at clojure.core$load$fn__5403.invoke(core.clj:5808)
	at clojure.core$load.doInvoke(core.clj:5807)
	at clojure.lang.RestFn.invoke(RestFn.java:408)
	at clojure.core$load_one.invoke(core.clj:5613)
	at clojure.core$load_lib$fn__5352.invoke(core.clj:5653)
	at clojure.core$load_lib.doInvoke(core.clj:5652)
	at clojure.lang.RestFn.applyTo(RestFn.java:142)
	at clojure.core$apply.invoke(core.clj:628)
	at clojure.core$load_libs.doInvoke(core.clj:5691)
	at clojure.lang.RestFn.applyTo(RestFn.java:137)
	at clojure.core$apply.invoke(core.clj:630)
	at clojure.core$use.doInvoke(core.clj:5785)
	at clojure.lang.RestFn.invoke(RestFn.java:408)
	at user$eval212.invoke(NO_SOURCE_FILE:1)
	at clojure.lang.Compiler.eval(Compiler.java:6767)
	at clojure.lang.Compiler.eval(Compiler.java:6730)
	at clojure.core$eval.invoke(core.clj:3076)
	at clojure.main$eval_opt.invoke(main.clj:288)
	at clojure.main$initialize.invoke(main.clj:307)
	at clojure.main$null_opt.invoke(main.clj:342)
	at clojure.main$main.doInvoke(main.clj:420)
	at clojure.lang.RestFn.invoke(RestFn.java:421)
	at clojure.lang.Var.invoke(Var.java:383)
	at clojure.lang.AFn.applyToHelper(AFn.java:156)
	at clojure.lang.Var.applyTo(Var.java:700)
	at clojure.main.main(main.java:37)
Caused by: java.io.FileNotFoundException: Could not locate myrecord__init.class or myrecord.clj on classpath.
	at clojure.lang.RT.load(RT.java:443)
	at clojure.lang.RT.load(RT.java:411)
	at clojure.core$load$fn__5403.invoke(core.clj:5808)
	at clojure.core$load.doInvoke(core.clj:5807)
	at clojure.lang.RestFn.invoke(RestFn.java:408)
	at clojure.core$load_one.invoke(core.clj:5613)
	at clojure.core$load_lib$fn__5352.invoke(core.clj:5653)
	at clojure.core$load_lib.doInvoke(core.clj:5652)
	at clojure.lang.RestFn.applyTo(RestFn.java:142)
	at clojure.core$apply.invoke(core.clj:628)
	at clojure.core$load_libs.doInvoke(core.clj:5691)
	at clojure.lang.RestFn.applyTo(RestFn.java:137)
	at clojure.core$apply.invoke(core.clj:628)
	at clojure.core$require.doInvoke(core.clj:5774)
	at clojure.lang.RestFn.invoke(RestFn.java:408)
	at core__init.load(Unknown Source)
	at core__init.<clinit>(Unknown Source)
	... 33 more

This bug also has also affected Austin: https://github.com/cemerick/austin/issues/23

Essentially this bug manifests itself when a namespace defining a protocol or a type/record has been JIT loaded and a namespace that needs the protocol/type/record class is being AOT compiled later. Since the namespace defining the class has already been loaded the class is never emitted on disk.

Comment by Nicola Mometto [ 06/Dec/14 6:51 PM ]

I've attached a tentative patch fixing the issue in the only way I found reasonable: forcing the reloading of namespaces during AOT compilation if the compiled classfile is not found in the compile-path or in the classpath

Comment by Nicola Mometto [ 06/Dec/14 7:30 PM ]

Updated patch forces reloading of the namespace even if a classfile exists in the compile-path but the source file is newer, mimicking the logic of clojure.lang.RT/load

Comment by Nicola Mometto [ 06/Dec/14 7:39 PM ]

Further testing demonstrated that this bug is not only scoped to deftypes/defprotocols but can manifest itself in the general case of a namespace "a" requiring a namespace "b" already loaded, and AOT compiling the namespace "a"

Comment by Tassilo Horn [ 08/Dec/14 4:46 AM ]

I'm also affected by this bug. Is there some workaround I can apply in the meantime, e.g., by dictating the order in which namespaces are going to be loaded/compiled in project.clj?

Comment by Nicola Mometto [ 15/Dec/14 10:58 AM ]

Tassilo, if you don't have control over whether or not a namespace that an AOT namespace depends on has already been loaded before compilation starts, requiring those namespaces with :reload-all should be enough to work around this issue

Comment by Tassilo Horn [ 15/Dec/14 11:36 AM ]

Nicola, thanks! But in the meantime I've switched to using clojure.java.api and omit AOT-compilation. That works just fine, too.

Comment by Michael Blume [ 15/Dec/14 5:05 PM ]

Tassilo, that's often a good solution, another is to use a shim clojure class

(ns myproject.main-shim (:gen-class))

(defn -main [& args]
  (require 'myproject.main)
  ((resolve 'myproject.main) args))

then your shim namespace is AOT-compiled but nothing else in your project is.

Comment by Tassilo Horn [ 16/Dec/14 1:07 AM ]

Thanks Michael, that's a very good suggestion. In fact, I've always used AOT only as a means to export some functions to Java-land. Basically, I did as you suggest but required the to-be-exported fn's namespace in the ns-form which then causes AOT-compilation of that namespace and its own deps recursively. So your approach seems to be as convenient from the Java side (no need to clojure.java.require `require` in order to require the namespace with the fn I wanna call ) while still omitting AOT. Awesome!

[CLJ-1517] Unrolled small vectors Created: 01/Sep/14  Updated: 09/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.7
Fix Version/s: Release 1.8

Type: Enhancement Priority: Critical
Reporter: Zach Tellman Assignee: Unassigned
Resolution: Unresolved Votes: 15
Labels: collections, performance

Attachments: File unrolled-collections-2.diff     File unrolled-collections.diff     Text File unrolled-vector-2.patch     Text File unrolled-vector.patch    
Patch: Code
Approval: Vetted


As discussed on the mailing list [1], this patch has two unrolled variants of vectors and maps, with special inner classes for each cardinality. Currently both grow to six elements before spilling over into the general versions of the data structures, which is based on rough testing but can be easily changed. At Rich's request, I haven't included any integration into the rest of the code, and there are top-level static create() methods for each.

The sole reason for this patch is performance, both in terms of creating data structures and performing operations on them. This can be seen as a more verbose version of the trick currently played with PersistentArrayMap spilling over into PersistentHashMap. Based on the benchmarks, which can be run by cloning cambrian-collections [2] and running 'lein test :benchmark', this should supplant PersistentArrayMap. Performance is at least on par with PAM, and often much faster. Especially noteworthy is the creation time, which is 5x faster for maps of all sizes (lein test :only cambrian-collections.map-test/benchmark-construction), and on par for 3-vectors, but 20x faster for 5-vectors. There are similar benefits for hash and equality calculations, as well as calls to reduce().

This is a big patch (over 5k lines), and will be kind of a pain to review. My assumption of correctness is based on the use of collection-check, and the fact that the underlying approach is very simple. I'm happy to provide a high-level description of the approach taken, though, if that will help the review process.

I'm hoping to get this into 1.7, so please let me know if there's anything I can do to help accomplish that.

[1] https://groups.google.com/forum/#!topic/clojure-dev/pDhYoELjrcs
[2] https://github.com/ztellman/cambrian-collections

Comment by Zach Tellman [ 01/Sep/14 10:13 PM ]

Oh, I forgot to mention that I didn't make a PersistentUnrolledSet, since the existing wrappers can use the unrolled map implementation. However, it would be moderately faster and more memory efficient to have one, so let me know if it seems worthwhile.

Comment by Nicola Mometto [ 02/Sep/14 5:23 AM ]

Zach, the patch you added isn't in the correct format, they need to be created using `git format-patch`

Comment by Nicola Mometto [ 02/Sep/14 5:31 AM ]

Also, I'm not sure if this is on-scope with the ticket but those patches break with *print-dup*, as it expects a static create(x) method for each inner class.

I'd suggest adding a create(Map x) static method for the inner PersistentUnrolledMap classes and a create(ISeq x) one for the inner PersistentUnrolledVector classes

Comment by Alex Miller [ 02/Sep/14 8:14 AM ]

Re making patches, see: http://dev.clojure.org/display/community/Developing+Patches

Comment by Jozef Wagner [ 02/Sep/14 9:16 AM ]

I wonder what is the overhead of having meta and 2 hash fields in the class. Have you considered a version where the hash is computed on the fly and where you have two sets of collections, one with meta field and one without, using former when the actual metadata is attached to the collection?

Comment by Zach Tellman [ 02/Sep/14 12:13 PM ]

I've attached a patch using the proper method. Somehow I missed the detailed explanation for how to do this, sorry. I know the guidelines say not to delete previous patches, but since the first one isn't useful I've deleted it to minimize confusion.

I did the print-dup friendly create methods, and then realized that once these are properly integrated, 'pr' will just emit these as vectors. I'm fairly sure the create methods aren't necessary, so I've commented them out, but I'm happy to add them back in if they're useful for some reason I can't see.

I haven't given a lot of thought to memory efficiency, but I think caching the hashes are worthwhile. I can see an argument for creating a "with-meta" version of each collection, but since that would double the size of an already enormous patch, I think that should probably wait.

Comment by Zach Tellman [ 03/Sep/14 4:31 PM ]

I found a bug! Like PersistentArrayMap, I have a special code path for comparing keywords, but my generators for collection-check were previously using only integer keys. There was an off-by-one error in the transient map implementation [1], which was not present for non-keyword lookups.

I've taken a close look for other gaps in my test coverage, and can't find any. I don't think this substantively changes the risk of this patch (an updated version of which has been uploaded as 'unrolled-collections-2.diff'), but obviously where there's one bug, there may be others.

[1] https://github.com/ztellman/cambrian-collections/commit/eb7dfe6d12e6774512dbab22a148202052442c6d#diff-4bf78dbf5b453f84ed59795a3bffe5fcR559

Comment by Zach Tellman [ 03/Oct/14 2:34 PM ]

As an additional data point, I swapped out the data structures in the Cheshire JSON library. On the "no keyword-fn decode" benchmark, the current implementation takes 6us, with the unrolled data structures takes 4us, and with no data structures (just lexing the JSON via Jackson) takes 2us. Other benchmarks had similar results. So at least in this scenario, it halves the overhead.

Benchmarks can be run by cloning https://github.com/dakrone/cheshire, unrolled collections can be tested by using the 'unrolled-collections' branch. The pure lexing benchmark can be reproduced by messing around with the cheshire.parse namespace a bit.

Comment by Zach Tellman [ 06/Oct/14 1:31 PM ]

Is there no way to get this into 1.7? It's an awfully big win to push off for another year.

Comment by Alex Miller [ 07/Oct/14 2:08 PM ]

Hey Zach, it's definitely considered important but we have decided to drop almost everything not fully done for 1.7. Timeframe for following release is unknown, but certainly expected to be significantly less than a year.

Comment by John Szakmeister [ 30/Oct/14 2:53 PM ]

You are all free to determine the time table, but I thought I'd point out that Zach is not entirely off-base. Clojure 1.4.0 was released April 5th, 2012. Clojure 1.5.0 was released March 1st, 2013 with 1.6.0 showing up March 25th, 2014. So it appears that the current cadence is around a year.

Comment by Alex Miller [ 30/Oct/14 3:40 PM ]

John, there is no point to comments like this. Let's please keep issue comments focused on the issue.

Comment by Zach Tellman [ 13/Nov/14 12:23 PM ]

I did a small write-up on this patch which should help in the eventual code review: http://blog.factual.com/using-clojure-to-generate-java-to-reimplement-clojure

Comment by Zach Tellman [ 07/Dec/14 10:34 PM ]

Per my conversation with Alex at the Conj, here's a patch that only contains the unrolled vectors, and uses the more efficient constructor for PersistentVector when spilling over.

Comment by Alex Miller [ 08/Dec/14 1:10 PM ]

Zach, I created a new placeholder for the map work at http://dev.clojure.org/jira/browse/CLJ-1610.

Comment by Jean Niklas L'orange [ 09/Dec/14 1:52 PM ]

It should probably be noted that core.rrb-vector will break for small vectors by this patch, as it peeks into the underlying structure. This will also break other libraries which peeks into the vector implementation internals, although I'm not aware of any other – certainly not any other contrib library.

Also, two comments on unrolled-vector.patch:

private transient boolean edit = true;
in the Transient class should probably be
private volatile boolean edit = true;
as transient means something entirely different in Java.

conj in the Transient implementation could invalidate itself without any problems (edit = false;) if it is converted into a TransientVector (i.e. spills over) – unless it has a notable overhead. The invalidation can prevent some subtle bugs related to erroneous transient usage.

Comment by Alex Miller [ 09/Dec/14 1:58 PM ]

Jean - understanding the scope of the impact will certainly be part of the integration process for this patch. I appreciate the heads-up. While we try to minimize breakage for things like this, it may be unavoidable for libraries that rely on implementation internals.

Comment by Michał Marczyk [ 09/Dec/14 2:03 PM ]

I'll add support for unrolled vectors to core.rrb-vector the moment they land on master. (Probably with some conditional compilation so as not to break compatibility with earlier versions of Clojure – we'll see when the time comes.)

Comment by Michał Marczyk [ 09/Dec/14 2:06 PM ]

I should say that it'd be possible to add generic support for any "vector lookalikes" by pouring them into regular vectors in linear time. At first glance it seems to me that that'd be out of line with the basic promise of the library, but I'll give it some more thought before the changes actually land.

Comment by Zach Tellman [ 09/Dec/14 5:43 PM ]

Somewhat predictably, the day after I cut the previous patch, someone found an issue [1]. In short, my use of the ArrayChunk wrapper applied the offset twice.

This was not caught by collection-check, which has been updated to catch this particular failure. It was, however, uncovered by Michael Blume's attempts to merge the change into Clojure, which tripped a bunch of alarms in Clojure's test suite. My own attempt to do the same to "prove" that it worked was before I added in the chunked seq functionality, hence this issue persisting until now.

As always, there may be more issues lurking. I hope we can get as many eyeballs on the code between now and 1.8 as possible.

[1] https://github.com/ztellman/cambrian-collections/commit/2e70bbd14640b312db77590d8224e6ed0f535b43
[2] https://github.com/MichaelBlume/clojure/tree/test-vector

[CLJ-1499] Replace seq-based iterators with direct iterators for all non-seq collections that use SeqIterator Created: 08/Aug/14  Updated: 02/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.7
Fix Version/s: Release 1.7

Type: Enhancement Priority: Critical
Reporter: Rich Hickey Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: None

Attachments: File clj-1499-all.diff     File clj-1499-v2.diff     File clj-1499-v3.diff     File clj-1499-v6.diff     Text File defrecord-iterator.patch     File defrecord-iterator-v2.diff    
Patch: Code and Test
Approval: Vetted


Add support for direct iterators instead of seq-based iterators for non-seq collections that use SeqIterator.

Patch adds support for direct iterators on the following (removing use of SeqIterator):

  • PersistentHashMap - new internal iterator (~20% faster)
  • APersistentSet - use internal map impl iterator (~5% faster)
  • PersistentQueue
  • PersistentStructMap
  • records (in core_deftype.clj)

Patch does not change use of SeqIterator in:

  • LazyTransformer$MultiStepper (not sure if this could be changed)
  • ASeq
  • LazySeq

Patch: clj-1499-v6.diff

Comment by Alex Miller [ 13/Aug/14 1:57 PM ]

The list of non-seqs that uses SeqIterator are:

  • records (in core_deftype.clj)
  • APersistentSet - fallback, maybe is ok?
  • PersistentHashMap
  • PersistentQueue
  • PersistentStructMap

Seqs (that do not need to be changed) are:

  • ASeq
  • LazySeq.java

LazyTransformer$MultiStepper - not sure

Comment by Ghadi Shayban [ 27/Sep/14 2:16 PM ]

attached iterator impl for defrecords. ready to leverage iteration for extmap when PHM iteration lands.

Comment by Alex Miller [ 29/Sep/14 12:52 PM ]

PHM patch

Comment by Alex Miller [ 29/Sep/14 10:26 PM ]

New patch that fixes bugs with PHMs with null keys (and added tests to expose those issues), added support for PHS.

Comment by Ghadi Shayban [ 29/Sep/14 10:45 PM ]

Alex, the defrecord patch already uses the iterator for extmap. It's just made better by the PHM patch.

Comment by Alex Miller [ 29/Sep/14 10:47 PM ]

Comment by Ghadi Shayban [ 30/Sep/14 4:17 PM ]

Heh. Skate to where the puck is going to be – Gretzky

Re: defrecord iterator: As is, it propagates exceptions from reaching the end of the ExtMap's iterator. As noted in CLJ-1453, PersistentArrayMap's iterator improperly returns an ArrayIndexOutOfBoundsException, rather than NoSuchElementException.

Comment by Alex Miller [ 30/Sep/14 6:41 PM ]

Hey Ghadi, rather than rebuilding the case map to pass to the RecordIterator, why don't you just pass the fields in iteration order to it and leverage the case map via .valAt like everything else?

Comment by Ghadi Shayban [ 30/Sep/14 7:30 PM ]

defrecord-iterator-v2.diff reuses valAt and minimizes macrology.

Comment by Alex Miller [ 07/Oct/14 2:04 PM ]

Comments from Stu (found under the couch):

"1. some of the impls (e.g. queue manually concatenate two iters. Would implementing iter-cat and calling that be simpler and more robust?
2. I found this tweak to the generative testing more useful in reporting failure, non-dependent on clojure.test, and capable of expecting failures. Waddya think?

(defn seq-iter-match
  [seqable iterable]
  (let [i (.iterator iterable)]
    (loop [s (seq seqable)
           n 0]
      (if (seq s)
          (when-not (.hasNext i)
            (throw (ex-info "Iterator exhausted before seq"
                            {:pos n :seqable seqable :iterable iterable})))
          (when-not (= (.next i) (first s))
            (throw (ex-info "Iterator and seq did not match"
                            {:pos n :seqable seqable :iterable iterable})))
          (recur (rest s) (inc n)))
        (when (.hasNext i)
          (throw (ex-info "Seq exhausted before iterator"
                          {:pos n :seqable seqable :iterable iterable})))))))

		(defspec seq-and-iter-match-for-maps
  [^{:tag clojure.test-clojure.data-structures/gen-map} m]
  (seq-iter-match m m))

3. similar generative approach would be good for the other types (looks like we just do maps)"

Comment by Alex Miller [ 02/Dec/14 3:03 PM ]

Latest patch (clj-1499-v6.diff) makes Stu's suggested change #2 above and adds tests recommended in #3. I looked at #1 but decided in the end that it wasn't going to make anything easier.

[CLJ-1152] PermGen leak in multimethods and protocol fns when evaled Created: 30/Jan/13  Updated: 06/Oct/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.4
Fix Version/s: Release 1.8

Type: Defect Priority: Critical
Reporter: Chouser Assignee: Unassigned
Resolution: Unresolved Votes: 8
Labels: memory, protocols

Attachments: File naive-lru-for-multimethods-and-protocols.diff     File protocol_multifn_weak_ref_cache.diff    
Patch: Code
Approval: Incomplete


There is a PermGen memory leak that we have tracked down to protocol methods and multimethods called inside an eval, because of the caches these methods use. The problem only arises when the value being cached is an instance of a class (such as a function or reify) that was defined inside the eval. Thus extending IFn or dispatching a multimethod on an IFn are likely triggers.

Reproducing: The easiest way that I have found to test this is to set "-XX:MaxPermSize" to a reasonable value so you don't have to wait too long for the PermGen spaaaaace to fill up, and to use "-XX:+TraceClassLoading" and "-XX:+TraceClassUnloading" to see the classes being loaded and unloaded.

leiningen project.clj
(defproject permgen-scratch "0.1.0-SNAPSHOT"
  :dependencies [[org.clojure/clojure "1.5.0-RC1"]]
  :jvm-opts ["-XX:MaxPermSize=32M"

You can use lein swank 45678 and connect with slime in emacs via M-x slime-connect.

To monitor the PermGen usage, you can find the Java process to watch with "jps -lmvV" and then run "jstat -gcold <PROCESS_ID> 1s". According to the jstat docs, the first column (PC) is the "Current permanent space capacity (KB)" and the second column (PU) is the "Permanent space utilization (KB)". VisualVM is also a nice tool for monitoring this.

Multimethod leak

Evaluating the following code will run a loop that eval's (take* (fn foo [])).

multimethod leak
(defmulti take* (fn [a] (type a)))

(defmethod take* clojure.lang.Fn

(def stop (atom false))
(def sleep-duration (atom 1000))

(defn run-loop []
  (when-not @stop
    (eval '(take* (fn foo [])))
    (Thread/sleep @sleep-duration)

(future (run-loop))

(reset! sleep-duration 0)

In the lein swank session, you will see many lines like below listing the classes being created and loaded.

[Loaded user$eval15802$foo__15803 from __JVM_DefineClass__]
[Loaded user$eval15802 from __JVM_DefineClass__]

These lines will stop once the PermGen space fills up.

In the jstat monitoring, you'll see the amount of used PermGen space (PU) increase to the max and stay there.

-    PC       PU        OC          OU       YGC    FGC    FGCT     GCT
 31616.0  31552.7    365952.0         0.0      4     0    0.000    0.129
 32000.0  31914.0    365952.0         0.0      4     0    0.000    0.129
 32768.0  32635.5    365952.0         0.0      4     0    0.000    0.129
 32768.0  32767.6    365952.0      1872.0      5     1    0.000    0.177
 32768.0  32108.2    291008.0     23681.8      6     2    0.827    1.006
 32768.0  32470.4    291008.0     23681.8      6     2    0.827    1.006
 32768.0  32767.2    698880.0     24013.8      8     4    1.073    1.258
 32768.0  32767.2    698880.0     24013.8      8     4    1.073    1.258
 32768.0  32767.2    698880.0     24013.8      8     4    1.073    1.258

A workaround is to run prefer-method before the PermGen space is all used up, e.g.

(prefer-method take* clojure.lang.Fn java.lang.Object)

Then, when the used PermGen space is close to the max, in the lein swank session, you will see the classes created by the eval'ing being unloaded.

[Unloading class user$eval5950$foo__5951]
[Unloading class user$eval3814]
[Unloading class user$eval2902$foo__2903]
[Unloading class user$eval13414]

In the jstat monitoring, there will be a long pause when used PermGen space stays close to the max, and then it will drop down, and start increasing again when more eval'ing occurs.

-    PC       PU        OC          OU       YGC    FGC    FGCT     GCT
 32768.0  32767.9    159680.0     24573.4      6     2    0.167    0.391
 32768.0  32767.9    159680.0     24573.4      6     2    0.167    0.391
 32768.0  17891.3    283776.0     17243.9      6     2   50.589   50.813
 32768.0  18254.2    283776.0     17243.9      6     2   50.589   50.813

The defmulti defines a cache that uses the dispatch values as keys. Each eval call in the loop defines a new foo class which is then added to the cache when take* is called, preventing the class from ever being GCed.

The prefer-method workaround works because it calls clojure.lang.MultiFn.preferMethod, which calls the private MultiFn.resetCache method, which completely empties the cache.

Protocol leak

The leak with protocol methods similarly involves a cache. You see essentially the same behavior as the multimethod leak if you run the following code using protocols.

protocol leak
(defprotocol ITake (take* [a]))

(extend-type clojure.lang.Fn
  (take* [this] '()))

(def stop (atom false))
(def sleep-duration (atom 1000))

(defn run-loop []
  (when-not @stop
    (eval '(take* (fn foo [])))
    (Thread/sleep @sleep-duration)

(future (run-loop))

(reset! sleep-duration 0)

Again, the cache is in the take* method itself, using each new foo class as a key.

Workaround: A workaround is to run -reset-methods on the protocol before the PermGen space is all used up, e.g.

(-reset-methods ITake)

This works because -reset-methods replaces the cache with an empty MethodImplCache.

Patch: protocol_multifn_weak_ref_cache.diff

Screened by:

Comment by Chouser [ 30/Jan/13 9:10 AM ]

I think the most obvious solution would be to constrain the size of the cache. Adding an item to the cache is already not the fastest path, so a bit more work could be done to prevent the cache from growing indefinitely large.

That does raise the question of what criteria to use. Keep the first n entries? Keep the n most recently used (which would require bookkeeping in the fast cache-hit path)? Keep the n most recently added?

Comment by Jamie Stephens [ 18/Oct/13 9:35 AM ]

At a minimum, perhaps a switch to disable the caches – with obvious performance impact caveats.

Seems like expensive LRU logic is probably the way to go, but maybe don't have it kick in fully until some threshold is crossed.

Comment by Alex Miller [ 18/Oct/13 4:28 PM ]

A report seeing this in production from mailing list:

Comment by Adrian Medina [ 10/Dec/13 11:43 AM ]

So this is why we've been running into PermGen space exceptions! This is a fairly critical bug for us - I'm making extensive use of multimethods in our codebase and this exception will creep in at runtime randomly.

Comment by Kevin Downey [ 17/Apr/14 9:52 PM ]

it might be better to split this in to two issues, because at a very abstract level the two issues are the "same", but concretely they are distinct (protocols don't really share code paths with multimethods), keeping them together in one issue seems like a recipe for a large hard to read patch

Comment by Kevin Downey [ 26/Jul/14 5:49 PM ]

naive-lru-method-cache-for-multimethods.diff replaces the methodCache in multimethods with a very naive lru cache built on PersistentHashMap and PersistentQueue

Comment by Kevin Downey [ 28/Jul/14 7:09 PM ]

naive-lru-for-multimethods-and-protocols.diff creates a new class clojure.lang.LRUCache that provides an lru cache built using PHashMap and PQueue behind an IPMap interface.

changes MultiFn to use an LRUCache for its method cache.

changes expand-method-impl-cache to use an LRUCache for MethodImplCache's map case

Comment by Kevin Downey [ 30/Jul/14 3:10 PM ]

I suspect my patch naive-lru-for-multimethods-and-protocols.diff is just wrong, unless MethodImplCache really is being used as a cache we can't just toss out entries when it gets full.

looking at the deftype code again, it does look like MethidImplCache is being used as a cache, so maybe the patch is fine

if I am sure of anything it is that I am unsure so hopefully someone who is sure can chime in

Comment by Nicola Mometto [ 31/Jul/14 11:02 AM ]

I haven't looked at your patch, but I can confirm that the MethodImplCache in the protocol function is just being used as a cache

Comment by dennis zhuang [ 08/Aug/14 6:21 AM ]

I developed a new patch that convert the methodCache in MultiFn to use WeakReference for dispatch value,and clear the cache if necessary.

I've test it with the code in ticket,and it looks fine.The classes will be unloaded when perm gen is almost all used up.

Comment by Alex Miller [ 22/Aug/14 4:55 PM ]

I don't know which to evaluate here. Does multifn_weak_method_cache.diff supersede naive-lru-for-multimethods-and-protocols.diff or are these alternate approaches both under consideration?

Comment by Kevin Downey [ 22/Aug/14 8:26 PM ]

the most straight forward thing, I think, is to consider them as alternatives, I am not a huge fan of weakrefs, but of course not using weakrefs we have to pick some bounding size for the cache, and the cache has a strong reference that could prevent a gc, so there are trade offs. My reasons to stay away from weak refs in general are using them ties the behavior of whatever you are building to the behavior of the gc pretty strongly. that may be considered a matter of personal taste

Comment by Andy Fingerhut [ 29/Aug/14 4:31 PM ]

All patches dated Aug 8 2014 and earlier no longer applied cleanly to latest master after some commits were made to Clojure on Aug 29, 2014. They did apply cleanly before that day.

I have not checked how easy or difficult it might be to update the patches.

Comment by Kevin Downey [ 29/Aug/14 7:00 PM ]

I've updated naive-lru-for-multimethods-and-protocols.diff to apply to the current master

Comment by Andy Fingerhut [ 29/Aug/14 7:34 PM ]

Thanks, Kevin. While JIRA allows multiple attachments to a ticket with the same filename but different contents, that can be confusing for people looking for a particular patch, and for a program I have that evaluates patches for things like whether they apply and build cleanly. Would you mind removing the older one, or in some other way making all the names unique?

Comment by Kevin Downey [ 29/Aug/14 8:43 PM ]

I deleted all of my attachments accept for my latest and greatest

Comment by dennis zhuang [ 30/Aug/14 9:51 AM ]

I updated multifn_weak_method_cache2.diff patch too.

I think using weak reference cache is better,because we have to keep one cache per multifn.When you have many multi-functions, there will be many LRU caches in memory,and they will consume too much memory and CPU for evictions. You can't choose a proper threshold for LRU cache in every environment.
But i don't have any benchmark data to support my opinion.

Comment by Alex Miller [ 10/Sep/14 2:38 PM ]

I'm going to set the LRU cache patch aside. I don't think it's possible to find a "correct" size for it and it seems weird to me to extend APersistentMap to build such a thing anyways.

I think it makes more sense to follow the same strategy used for other caches (such as the Keyword cache) - a combination ConcurrentHashMap with WeakReferences and a ReferenceQueue for clean-up. I don't see any compelling reason not to take the same path as other internal caches.

Comment by Alex Miller [ 10/Sep/14 3:44 PM ]

Stepping back a little to think about the problem.... our requirements are:
1) cache map of dispatch value (could be any Object) to multimethod function (IFn)
2) do we want keys to be compared based on equality or identity? identity-based opens up more reference-based caching options and is fine for most common dispatch types (Class, Keyword), but reduces (often eliminates?) cache hits for all other types where values are likely to be equiv but not identical (vector of strings for example)
3) concurrent access to cache
4) cache cannot grow without bound
5) cache cannot retain strong references to dispatch values (the cache keys) because the keys might be instances of classes that were loaded in another classloader which will prevent GC in permgen

multifn_weak_method_cache.diff uses a ConcurrentHashMap (#3) that maps RefWrapper around keys to IFn (#1). The patch uses Util.equals() (#2) for (Java) equality-based comparisons. The RefWrapper wraps them in WeakReferences to avoid #5. Cache clearing based on the ReferenceQueue is used to prevent #4.

A few things definitely need to be fixed:

  • Util.equals() should be Util.equiv()
  • methodCache and rq should be final
  • Why does RefWrapper have obj and expect rq to possibly be null?
  • RefWrapper fields should all be final
  • Whitespace errors in patch

Another idea entirely - instead of caching dispatch value, cache based on hasheq of dispatch value then equality check on value. Could then use WeakHashMap and no RefWrapper.

This patch does not cover the protocol cache. Is that just waiting for the multimethod case to look good?

Comment by dennis zhuang [ 10/Sep/14 7:18 PM ]

Hi, alex, thanks for your review.But the latest patch is multifn_weak_method_cache2.diff. I will update the patch soon by your review, but i have a few questions to be explained.

1) I will use Util.equiv() instead of Util.equals().But what's the difference of them?
2) When the RefWrapper is retained as key in ConcurrentHashMap, it wraps the obj in WeakReference.But when trying to find it in ConcurrentHashMap, it uses obj directly as strong reference, and create it with passing null ReferenceQueue.Please look at the multifn_weak_method_cache2.diff line number 112. It short, the patch stores the dispatch value as weak reference in cache,but uses strong reference for cache getting.

3) If caching dispatch value based on hasheq , can we avoid hasheq value conflicts? If two different dispatch value have a same hasheq( or why it doesn't happen?), we would be in trouble.

Sorry, the patch doesn't cover the protocol cache, i will add it ASAP.

Comment by dennis zhuang [ 11/Sep/14 2:02 AM ]

The new patch 'protocol_multifn_weak_ref_cache.diff' is uploaded.

1) Using Util.equiv() instead of Util.equals()
2) Moved the RefWrapper and it's associated methods to Util.java, and refactor the code based on alex's review.
3) Fixed whitespace errors.
4) Fixed PermGen leak in protocol fns.

Comment by Alex Miller [ 03/Oct/14 10:35 AM ]

I screened this ticket again with Brenton Ashworth and had the following comments:

1) We need to have a performance test to verify that we have not negatively impacted performance of multimethods or protocol invocation.
2) Because there are special cases around null keys in the multimethod cache, please verify that there are existing example tests using null dispatch values in the existing test coverage.
3) In Util$RefWrapper.getObj() - why does this return this.ref at the end? It was not clear to me that the comment was correct or that this was useful in any way.
4) In Util$RefWrapper.clearRefWrapCache() - can k == null in that if check? If not, can we omit that? Also, if you explicitly create the Iterator from the entry set, you can call .remove() on it more efficiently than calling .remove() on the cache itself.
5) In core_deftype / MethodImplCache, it appears that you are modifying a now-mutable field rather than the prior version that was going to great lengths to stay immutable. It's not clear to me what the implications of this change are and that concerns me. Can it use a different collection or code to stay immutable?
6) Please update the description of this ticket to include an approach section that describes the changes we are making.


[CLJ-979] Clojure resolves to wrong deftype classes when AOT compiling or reloading Created: 03/May/12  Updated: 17/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.3, Release 1.4, Release 1.5, Release 1.6, Release 1.7
Fix Version/s: Release 1.7

Type: Defect Priority: Critical
Reporter: Edmund Jackson Assignee: Unassigned
Resolution: Unresolved Votes: 13
Labels: aot, classloader, compiler

Attachments: Text File CLJ-979.patch     Text File clj-979-symptoms.patch     Text File CLJ-979-v2.patch     Text File CLJ-979-v3.patch     Text File CLJ-979-v4.patch     Text File CLJ-979-v5.patch     Text File CLJ-979-v6.patch     Text File CLJ-979-v7.patch    
Patch: Code and Test
Approval: Vetted


Compiling a class via `deftype` during AOT compilation gives different results for the different constructors. These hashes should be identical.

user=> (binding [*compile-files* true] (eval '(deftype Abc [])))
user=> (hash Abc)
user=> (hash (class (->Abc)))
31966239 ;; should be 16446700

This also means that whenever there's a stale AOT compiled deftype class in the classpath, that class will be used rather then the JIT compiled one, breaking repl interaction.

Another demonstration of this classloader issue (from CLJ-1495) when reloading deftypes (no AOT) :

user> (defrecord Foo [bar])
user> (= (->Foo 42) #user.Foo{:bar 42}) ;;expect this to evaluate to true
user> (defrecord Foo [bar])
user> (= (->Foo 42) #user.Foo{:bar 42}) ;;expect this to evaluate to true also -- but it doesn't!

This bug also affects AOT compilation of multimethods that dispatch on a class, this affected core.match for years see http://dev.clojure.org/jira/browse/MATCH-86, http://dev.clojure.org/jira/browse/MATCH-98. David had to work-around this issue by using a bunch of protocols instead of multimethods.

Cause of the bug: currently clojure uses Class.forName to resolve a class from a class name, which ignores the class cache from DynamicClassLoader thus reloading deftypes or mixing AOT compilation at the repl with deftypes breaks, resolving to the wrong class.

Approach: the current patch (CLJ-979-v7.patch) addresses this issue in multiple ways:

  • it makes RT.classForName/classForNameNonLoading look in the class cache before delegating to Class/forName if the current classloader is not a DynamicClassLoader (this incidentally addresses also CLJ-1457)
  • it makes clojure use RT.classForName/classForNameNonLoading instead of Class/forName
  • it overrides Classloader/loadClass so that it's class cache aware – this method is used by the jvm to load classes
  • it changes gen-interface to always emit an in-memory interface along the [optional] in disk interface so that the in-memory class is always updated.

Comment by Scott Lowe [ 12/May/12 9:05 PM ]

I can't reproduce this under Clojure 1.3 or 1.4, and Leiningen 1.7.1 on either Java 1.7.0-jdk7u4-b21 OpenJDK 64-Bit or Java 1.6.0_31 Java HotSpot 64-Bit. OS is Mac OS X 10.7.

Edmund, how are you running this AOT code? I wrapped your code in a main function and built an uberjar from it.

Comment by Edmund Jackson [ 13/May/12 2:20 AM ]

Hi Scott,


I have two use cases
1. AOT compile and call from repl.
My steps: git clone, lein compile, lein repl, (use 'aots.death), (in-ns 'aots.death), (= (class (Dontwork. nil)) (class (map->Dontwork {:a 1}))) => false

2. My original use case, which I've minimised here, is an AOT ns, producing a genclass that is called instantiated from other Java (no main). This produces the same error. I will produce an example of this and post it too.

Comment by Edmund Jackson [ 13/May/12 4:23 AM ]

Hi Scott,

Here is an example of it failing in the interop case: https://github.com/ejackson/aotquestion2
The steps I'm following to compile this all up are

git clone git@github.com:ejackson/aotquestion2.git
cd aotquestion2/cljside/
lein uberjar
lein install
cd ../javaside/
mvn package
java -jar ./target/aotquestion-1.0-SNAPSHOT.jar

and it dies with this:

Exception in thread "main" java.lang.ClassCastException: cljside.core.Dontwork cannot be cast to cljside.core.Dontwork
at cljside.MyClass.makeDontwork(Unknown Source)
at aotquestion.App.main(App.java:8)

The error message is really confusing (to me, anyway), but I think its the same root problem as for the REPL case.

What do you see when you run the above ?

Comment by Scott Lowe [ 13/May/12 8:41 AM ]

Ah, yes, looks like my initial attempt to reproduce was too simplistic. I used your second git repo, and can now confirm that it's failing for me with the same error.

Comment by Scott Lowe [ 13/May/12 10:35 PM ]

I looked into this a little further and the AOT generated code looks correct, in the sense that both code paths appear to be returning the same type.

However, I wonder if this is really a ClassLoader issue, whereby two definitions of the same class are being loaded at different times, because that would cause the x.y.Class cannot be cast to x.y.Class exception that we're seeing here.

Comment by Steve Miner [ 03/Sep/13 9:54 AM ]

This could be related to CLJ-1157 which deals with a ClassLoader issue with AOT compiled code.

Comment by Ambrose Bonnaire-Sergeant [ 29/Mar/14 1:11 PM ]

I've tried this patch attached to CLJ-1157 and it did not solve this issue.

Comment by Ambrose Bonnaire-Sergeant [ 29/Mar/14 2:27 PM ]

This bug seems to be rooted in different behaviour for do/let under compilation. Attached a patch showing these symptoms in the hope it helps people find the cause.

Comment by Peter Taoussanis [ 22/Sep/14 3:12 AM ]

Just a quick note to confirm that this still seems to be around as of Clojure 1.7.0-alpha2. Don't have any useful input on possible solutions, sorry.

Comment by Alex Miller [ 04/Dec/14 1:12 PM ]

Duplicates - CLJ-1495, CLJ-1132

Comment by Nicola Mometto [ 04/Dec/14 1:50 PM ]

The attached patch fixes the classloader issues by routing RT.classForName & variants through the DynamicClassLoader class cache before invoking Class.forName

Comment by Nicola Mometto [ 04/Dec/14 1:59 PM ]

Re-adding triaged status added by Alex Miller that got accidentaly nuked by a race-condition between my edits to the ticket description and Alex's ones

Comment by Nicola Mometto [ 04/Dec/14 2:30 PM ]

0001-CLJ-979-make-clojure-resolve-to-the-correct-Class-in-v2.patch is the same as 0001-CLJ-979-make-clojure-resolve-to-the-correct-Class-in.patch except it unconditionally looks for classes in the class cache of DynamicClassLoader, even if baseLoader() is not a DynamicClassLoader.
This fixes the bug of CLJ-1457 but might just be a workaround

Comment by Michael Blume [ 11/Dec/14 3:29 PM ]

Current patch blows up my Clojure build


Comment by Nicola Mometto [ 11/Dec/14 3:45 PM ]

Michael: the current patch builds clojure fine for me, I'll try to reproduce. Which jvm version are you using?

Comment by Michael Blume [ 11/Dec/14 4:26 PM ]

[14:24][michael.blume@tcc-michael-4:~/workspace/clojure((0fc43db...))]$ java -version
java version "1.8.0_25"
Java(TM) SE Runtime Environment (build 1.8.0_25-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)
[14:24][michael.blume@tcc-michael-4:~/workspace/clojure((0fc43db...))]$ mvn -version
Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4; 2014-08-11T13:58:10-07:00)
Maven home: /usr/local/Cellar/maven/3.2.3/libexec
Java version: 1.8.0_25, vendor: Oracle Corporation
Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0_25.jdk/Contents/Home/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "mac os x", version: "10.10.1", arch: "x86_64", family: "mac"

build was after I applied the patch to the current master branch of the clojure github repo

Comment by Andy Fingerhut [ 11/Dec/14 5:34 PM ]

I am seeing a similar compilation error as Michael Blume, with both JDK 1.7 and 1.8 on Mac OS X 10.9.5.

By accident I found that if I take latest Clojure master and do 'mvn package', then apply the patch CLJ-979.patch dated Dec 11 2014, then do 'mvn package' again without 'mvn clean', it compiles with no errors. If I do 'mvn clean' then 'mvn package' in a patched tree, I get the error every time I've tried.

Comment by Nicola Mometto [ 12/Dec/14 5:50 AM ]

The updated patch fixes the LinkageError Andy and Michael were getting.

Andy, Michael, can you confirm?

Comment by Nicola Mometto [ 12/Dec/14 9:38 AM ]

Added more testcases to new patch

Comment by Nicola Mometto [ 12/Dec/14 10:09 AM ]

Cleaned up the patch from whitespace changes

Comment by Andy Fingerhut [ 12/Dec/14 12:32 PM ]

I tried latest Clojure master plus patch CLJ-979-v4.patch, dated 12 Dec 2014, with Mac OS X 10.9.5 + JDK7, and Ubuntu Linux 14.04 with JDKs 6 through 9, and 'mvn clean' followed by 'mvn package' built and passed tests successfully with all of them.

I did notice that some files were created in the test directory that were not cleaned up by the end of the test, which you can use 'git status .' to see. Not sure if that is considered a bad thing for Clojure tests.

Comment by Nicola Mometto [ 12/Dec/14 1:07 PM ]

Thanks Andy, I've updated the patch and it now should remove all temporary classes created by the test.
It's probably not the best way to do it but I couldn't figure out how to do it another way.

Comment by Michael Blume [ 12/Dec/14 2:34 PM ]

Yep, looks good to me =)

Comment by Alex Miller [ 15/Dec/14 4:01 PM ]

Thanks first to Nicola for all his work so far on this!

Some feedback:
1) While the ticket itself isn't bad, I would really like to focus the title and description on a crisp statement of the real problem now that we understand it more. I'd like help on making sure we capture that correctly - how is this for a title: "Uses of Class.forName() miss classes in DynamicClassLoader cache?" ?

Similarly, the description should focus on the problem and show some examples. The defrecord one is good. The first example works for me before the patch and fails after?

2) The crux of this whole thing is the change in loading order in DCL.loadClass() - changing this is a big deal. We really need broader testing with things likely to be affected - off the top of my head: Immutant, Pomegranate, Leiningen, or anything else that monkeys with classloader stuff. Maybe something with Eclipse/OSGi if there is something testable out there.

3) DynamicClassLoader comments:
a) loadClass(String name) - I believe this is identical to the super impl, so can be removed.
b) findClass(String name) - now that we are hijacking loadClass(), I'm not sure it's even necessary to implement this or to call super.findClass() - if you get to the super.findClass(), I would expect that to always throw CNFE. Potentially, this method could even be removed (but this might do bad things if there are subclasses of DCL out there in the wild).
c) loadClass(String name, ...) - instead of calling findClass() and using the CNFE for control flow, you could just directly call findInMemoryClass(), then use a returned null as the decision factor. Again, this is possibly bad if there are DCL subclasses, so I'm on the fence about it.

4) Is the change in gen-interface something that should be a separate ticket? Seems like it could be separable.

5) I don't like the test changes with respect to set up and cleanup. The build already supports compiling a subset of test ns'es (like clojure.test-clojure.genclass.examples). I'd prefer to use that existing mechanism if at all possible. Check the build.xml for the hard-coded ns list.

6) What are the performance implications? I'm not expecting they are significant but we just made a bunch of changes for compilation performance and I'd hate to undo them all. Could findInMemoryClass be smarter about avoiding checks that can't succeed (avoiding "java.*" for example?).

Comment by Nicola Mometto [ 15/Dec/14 5:43 PM ]

1) It's not really about Class.forName() specifically, it's about DynamicClassLoader not being class cache aware in the loadClass method. The JVM uses the classloader loadClass method for resolving all kind of class usages,
including but not limited to Class.forName() (i.e. when loading some bytecode containing a "new" instruction, that class reference will be resolved via a call to loadClass)
I'll try to make the documentation a bit more clear, the first example is an exhibit of the bugged behaviour, the two calls should output the same hash.

2,4) So, there are 3 approaches to how DynamicClassLoader could go at it:

  • Prefer in-disk classes over in-memory classes, roughly the current approach (sometimes it will pick the in-memory class over the in-disk one causing weird bugs like Foo. and ->Foo constructing different classes), has the
    negative effect of breaking interaction between AOT compilation and JIT loading, which has created all sorts of troubles with redefinig deftypes/defprotocols in repls while having stale classfiles in disk.
  • Always pick the most-updated class, this has the advangate of being always correct but has several disadvantages that make it inpracticable in my opinion: we'd have to keep track of the timestamp in which a dynamic class
    is defined, and make the loadClass implementation such that if there a class is both in-memory and in-disk, it compares the timestamps and select the most updated one. This would complicate the implementation a lot and we'd
    likely have to pay a substantial performance hit.
  • Prefer in-memory classes over in-disk classes, the approach proposed in the current patches. It has the advantage of being almost always correct, make repl interaction & jit/aot mixing work fine and the implementation is
    mostly straightforward. The downside is that in cases like gen-class where an AOT class can actually be the most updated version, the in-memory version will be used. In clojure all the forms that do bytecode emission either
    only do AOT compilation or do AOT compilation on demand and always load the class in memory, except gen-interface that doesn't load the class in memory if it's being AOT compiled. Changing its semantics to behave like the
    other jit/aot compiling forms (deftype/defrecord/reify) is the only way to make this approach work so I don't think this should go in another ticket.

5) I don't like the previous testing strategy either but couldn't figure out a better way. Thanks for the pointer on the already in-place infrastructure, I'll check it out and update the patch

In the meantime I've uploaded a new patch addressing 3 and 6. Specifically:
3) I removed the unnecessary loadClass(String) arity, I've made loadClass(String, boolean) use findInMemoryClass(String) directly rather than relying on findClass(String) since nowhere in the documentation it guarantess that
findClass will be used by loadClass. However I've left the findClass(String) implementation in place in case there's code out there that relies on this.
6) I haven't done any serious testing but I haven't noticed any significant difference in compile times for any of my tools.* contrib libraries with the current patch. Filtering "java.*" class names before the inMemory check
didn't seem to produce any difference so it's not included in the updated patch. However I'll probably include an alternative patch with that filtering to do more performance testings and see if it can actually help a bit.

All this said, I'm afraid that I won't have time to personally do an in-depth benchmarking & cross project testing of this patch. I've been spending almost all the free time I had in the past weeks working through a bunch of tickets (mostly this one) but now because of school and other commitments I can't promise I will be able to do anything more than maintaining the current patch & answering to any questions about the bug. Any help in moving this ticket further would be appreciated, in particular to address points 2 and 6.

Comment by Alex Miller [ 16/Dec/14 8:33 AM ]

Thanks Nicola. I'll certainly take over sheparding the bug and appeal to the greater community for help in broad testing when I think we're ready for that.

Comment by Nicola Mometto [ 16/Dec/14 12:50 PM ]

Updated patch with better tests, addressing Alex Miller's comments.

[CLJ-703] Improve writeClassFile performance Created: 04/Jan/11  Updated: 08/Oct/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.3
Fix Version/s: None

Type: Enhancement Priority: Critical
Reporter: Jürgen Hötzel Assignee: Unassigned
Resolution: Unresolved Votes: 19
Labels: Compiler, performance

Attachments: Text File 0001-use-File.mkdirs-instead-of-mkdir-every-single-direct.patch     Text File 0002-Ensure-atomic-creation-of-class-files-by-renaming-a-.patch     Text File improve-writeclassfile-perf.patch     Text File remove-flush-and-sync-only.patch     Text File remove-sync-only.patch    
Patch: Code
Approval: Triaged


This Discussion about timing issues when writing class files led to the the current implementation of synchronous writes to disk. This leads to bad performance/system-load when compiling Clojure code.

This Discussion questioned the current implentation.

Synchronous writes are not necessary and also do not ensure (crash while calling write) valid classfiles.

These Patches (0001 is just a code cleanup for creating the directory structure) ensures atomic creation of classfiles by using File.renameTo()

Comment by David Powell [ 17/Jan/11 2:16 PM ]

Removing sync makes clojure build much faster. I wonder why it was added in the first place? I guess only Rich knows? I assume that it is not necessary.

If we are removing sync though, I wouldn't bother with the atomic rename stuff. Doing that sort of thing can cause problems on some platforms, eg with search indexers and virus checkers momentarily locking files after they are created.

The patch seems to be assuming that sync is there for some reason, but my initial assumption would be that sync isn't necessary - perhaps it was working around some issue that no longer exists?

Comment by Jürgen Hötzel [ 19/Jan/11 2:05 PM ]

Although its unlikely: there is a possible race condition "loading a paritally written classfile"?:


Comment by John Szakmeister [ 25/May/12 4:22 AM ]

The new improve-writeclassfile-perf version of the patch combines the two previous patches into a single patch file and brings them up-to-date with master. I can split the two changes back out into separate patch files if desired, but I figured out current tooling is more geared towards a single patch being applied.

Comment by John Szakmeister [ 25/May/12 4:36 AM ]

FWIW, both fixes look sane. The first one is a nice cleanup. The second one is a little more interesting in that uses a rename operation to put the final file into place. It removes the sync call, which does make things faster. In general, if we're concerned about on-disk consistency, we should really have a combination of the two: write the full contents to a tmp file, sync it, and atomically rename to the destination file name.

Neither the current master, nor the current patch will guarantee on-disk consistency across a machine wide crash. The current master could crash before the sync() occurs, leaving the file in an inconsistent state. With the patch, the OS may not get the file from file cache to disk before an OS level crash occurs, and leave the file in an inconsistent state as well. The benefit of the patch version is that the whole file does atomically come into view at once. It does have a nasty side effect of leaving around a temp file if the compiler crashes just before the rename though.

Perhaps a little more work to catch an exception and clean up is in order? In general, I like the patched version better.

Comment by Ivan Kozik [ 05/Oct/12 7:07 PM ]

File.renameTo returns false on (most?) errors, but the patch doesn't check for failure. Docs say "The return value should always be checked to make sure that the rename operation was successful." Failure might be especially likely on Windows, where files are opened by others without FILE_SHARE_DELETE.

Comment by Dave Della Costa [ 23/Jun/14 11:37 PM ]

We've been wondering why our compilation times on linux were so slow. It became the last straw when we walked away from one project and came back after 15 minutes and it was not done yet.

After some fruitless investigation into our linux configuration and lein java args, we stumbled upon this issue via the associated Clojure group thread. Upon commenting out the flush() and sync() lines (https://github.com/clojure/clojure/blob/master/src/jvm/clojure/lang/Compiler.java#L7171-L7172) and compiling Clojure 1.6 ourselves, our projects all started compiling in under a minute.

Point being, can we at least provide some flag to allow for "unsafe compilation" or something? As it is, this is bad enough that we've manually modified all our local versions of Clojure to work around the issue.

Comment by Tim McCormack [ 30/Sep/14 4:10 PM ]

Additional motivation: This becomes really unpleasant on an encrypted filesystem, since write and read latency become higher.

As a partial workaround, I've been using this script to mount a ramdisk over top of target, which speeds up compilation 2-4x: https://gist.github.com/timmc/6c397644668bcf41041f (but removing flush() and sync() entirely would probably speed things up even more, if safe)

Comment by Ragnar Dahlen [ 06/Oct/14 12:30 PM ]

I'd like to explore this issue further as I also don't think the flush and sync calls add any value, but do have a severe impact on performance.

To resurrect the discussion, I've attached a new patch with the following approach:

  • create a temporary file
  • write class bytecode to temporary file, no flush or sync
  • close temporary file
  • atomic rename of temporary file to class file name

It is different to previous patches in that:

  • it applies cleanly to master
  • it checks return value from File.renameTo
  • it omits proposed File.mkdirs change as the current implementation is actually converting from an "internal name", where forward slashes are assumed (splits on "/"), to a platform specific path using File.separator. I'm not convinced that the previous patch is safe on all versions of Windows, and I think it's separate from the main issue here.

I opted for the atomic rename of a temp file to avoid leaving empty class files with a correct expected class file name in case of failure.

It is my understanding that this patch will guarantee that:

  • when writeClassFile returns successfully, a class file with the expected name will exists, and subsequent reads from that file name will return the expected bytecode (possibly from kernel buffers).
  • when writeClassFile fails, a class file with the expected name will not have been created (or updated if it previously existed).

Anything preventing the operating system from flushing its buffers to disk (power failure etc) might leave a corrupt (empty, partially written) class file. It's my opinion that that is acceptable behaviour, and worth the performance improvement (I'm seeing AOT compilation reduced from 1m20s -> 22s on one of our codebases, would be happy to provide more benchmarks if requested).

Would be grateful for feedback/testing of this patch.

Comment by Ragnar Dahlen [ 08/Oct/14 6:00 AM ]

We're testing this patch on various projects/platforms at my company. So far we've seen:

  • Significantly reduced compilation times on Linux (two typical examples: 30s to 15s, 1m30s to 30s)
  • No significant change in compilation times on Mac OSX.
  • File.renameTo consistently failing on a Windows machine.

My understanding is that the performance difference between Linux and OSX is due to differences in how these platforms implement fsync. OSX by default does not actually tell the drive to flush its buffers (requires fcntl F_FULLSYNC for this, not used by JVMs) [1], whereas Linux does [2].

Our very limited test shows (as was previously pointed out) that File.renameTo is problematic on Windows. I've attached a new patch that doesn't use rename, and only has the the sync call removed (flush is a no-op for FileOutputStreams). We're currently testing this patch.

The drawback of this patch is that it may leave correctly named, but empty class files if the write fails. One option would be to try and delete the file in the catch block. Personally, I wouldn't expect a compilation that failed because of OS/IO reasons to leave my classfiles in a consistent state.

[1]: "Note that while fsync() will flush all data from the host to the drive (i.e. the "permanent storage device"), the drive itself may not physically write the data to the platters for quite some time and it may be written in an out-of-order sequence.": https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/fsync.2.html

[2]: "[...] includes writing through or flushing a disk cache if present."

[CLJ-700] contains? broken for transient collections Created: 01/Jan/11  Updated: 17/Dec/14

Status: Open
Project: Clojure
Component/s: None
Affects Version/s: Release 1.2
Fix Version/s: Release 1.8

Type: Defect Priority: Critical
Reporter: Herwig Hochleitner Assignee: Unassigned
Resolution: Unresolved Votes: 14
Labels: transient

Attachments: Java Source File 0001-Refactor-of-some-of-the-clojure-.java-code-to-fix-CL.patch     File clj-700-7.diff     File clj-700-8.diff     File clj-700.diff     Text File clj-700-patch4.txt     Text File clj-700-patch6.txt     Text File clj-700-rt.patch    
Patch: Code and Test
Approval: Vetted


Behavior with Clojure 1.6.0:

user=> (contains? (transient {:x "fine"}) :x)
IllegalArgumentException contains? not supported on type: clojure.lang.PersistentArrayMap$TransientArrayMap  clojure.lang.RT.contains (RT.java:724)
;; expected: true

user=> (contains? (transient (hash-map :x "fine")) :x)
IllegalArgumentException contains? not supported on type: clojure.lang.PersistentHashMap$TransientHashMap  clojure.lang.RT.contains (RT.java:724)
;; expected: true

user=> (contains? (transient [1 2 3]) 0)
IllegalArgumentException contains? not supported on type: clojure.lang.PersistentVector$TransientVector  clojure.lang.RT.contains (RT.java:724)
;; expected: true

user=> (contains? (transient #{:x}) :x)
IllegalArgumentException contains? not supported on type: clojure.lang.PersistentHashSet$TransientHashSet  clojure.lang.RT.contains (RT.java:724)
;; expected: true

user=> (:x (transient #{:x}))
;; expected: :x

user=> (get (transient #{:x}) :x)
;; expected: :x

Behavior with latest Clojure master as of Jun 27 2014 (same as Clojure 1.6.0) plus patch clj-700-7.diff. In all cases it matches the expected results shown in comments above:

user=> (contains? (transient {:x "fine"}) :x)
user=> (contains? (transient (hash-map :x "fine")) :x)
user=> (contains? (transient [1 2 3]) 0)
user=> (contains? (transient #{:x}) :x)
user=> (:x (transient #{:x}))
user=> (get (transient #{:x}) :x) 

Analysis by Alexander Redington: This is caused by expectations in clojure.lang.RT regarding the type of collections for some methods, e.g. contains() and getFrom(). Checking for contains looks to see if the instance passed in is Associative (a subinterface of PersistentCollection), or IPersistentSet.

This patch refactors several of the Clojure interfaces so that logic abstract from the issue of immutability is pulled out to a general interface (e.g. ISet, IAssociative), but preserves the contract specified (e.g. Associatives only return Associatives when calling assoc()).

With more general interfaces in place the contains() and getFrom() methods were then altered to conditionally use the general interfaces which are agnostic of persistence vs. transience. Includes tests in transients.clj to verify the changes fix this problem.

Questions on this approach from Stuart Halloway to Rich Hickey:

1. this represents working back from the defect to rethinking abstractions (good!). Does it go far enough?

2. what are good names for the interfaces introduced here?

Alex Miller: Should also keep an eye on CLJ-787 as it may have some collisions with this one.

Patch: clj-700-8.diff

One 'trailing whitespace' warning is perfectly normal when applying this patch to latest Clojure master as of Sep 1 2014, as shown below. This is simply because of carriage returns at the end of lines in file Associative.java. I know of no way to avoid such a warning without removing CRs from all Clojure source files (e.g. CLJ-1026):

% git am -s --keep-cr --ignore-whitespace < ~/clj/patches/clj-700-8.diff
Applying: Refactor of some of the clojure .java code to fix CLJ-700.
/Users/andy/clj/latest-clj/clojure/.git/rebase-apply/patch:29: trailing whitespace.
public interface Associative extends IPersistentCollection, IAssociative{
warning: 1 line adds whitespace errors.
Applying: more CLJ-700: refresh to use hasheq


Adding an addendum here for now. Needs more discussion and clean up before screening. I added clj-700-rt.patch which is a completely different approach to solving this issue in a less invasive way - clj-700-rt.patch. - Alex M

Comment by Herwig Hochleitner [ 01/Jan/11 8:01 PM ]

the same is also true for TransientVectors

{{(contains? (transient [1 2 3]) 0)}}


Comment by Herwig Hochleitner [ 01/Jan/11 8:25 PM ]

As expected, TransientSets have the same issue; plus an additional, probably related one.

(:x (transient #{:x}))


(get (transient #{:x}) :x)


Comment by Alexander Redington [ 07/Jan/11 2:07 PM ]

This is caused by expectations in clojure.lang.RT regarding the type of collections for some methods, e.g. contains() and getFrom(). Checking for contains looks to see if the instance passed in is Associative (a subinterface of PersistentCollection), or IPersistentSet.

This patch refactors several of the Clojure interfaces so that logic abstract from the issue of immutability is pulled out to a general interface (e.g. ISet, IAssociative), but preserves the contract specified (e.g. Associatives only return Associatives when calling assoc()).

With more general interfaces in place the contains() and getFrom() methods were then altered to conditionally use the general interfaces which are agnostic of persistence vs. transience. Includes tests in transients.clj to verify the changes fix this problem.

Comment by Stuart Halloway [ 28/Jan/11 10:35 AM ]

Rich: Patch doesn't currently apply, but I would like to get your take on approach here. In particular:

  1. this represents working back from the defect to rethinking abstractions (good!). Does it go far enough?
  2. what are good names for the interfaces introduced here?
Comment by Alexander Redington [ 25/Mar/11 7:44 AM ]

Rebased the patch off the latest pull of master as of 3/25/2011, it should apply cleanly now.

Comment by Stuart Sierra [ 17/Feb/12 2:59 PM ]

Latest patch does not apply as of f5bcf647

Comment by Andy Fingerhut [ 17/Feb/12 5:59 PM ]

clj-700-patch2.txt does patch cleanly to latest Clojure head as of a few mins ago. No changes to patch except in context around changed lines.

Comment by Andy Fingerhut [ 07/Mar/12 3:23 AM ]

Sigh. Git patches applied via 'git am' are fragile beasts indeed. Look at them the wrong way and they fail to apply.

clj-700-patch3.txt applies cleanly to latest master as of Mar 7, 2012, but not if you use this command:

git am -s < clj-700-patch3.txt

I am pretty sure this is because of DOS CR/LF line endings in the file src/jvm/clojure/lang/Associative.java. The patch does apply cleanly if you use this command:

git am --keep-cr -s < clj-700-patch3.txt

Comment by Andy Fingerhut [ 23/Mar/12 6:34 PM ]

This ticket was changed to Incomplete and waiting on Rich when Stuart Halloway asked for feedback on the approach on 28/Jan/2011. Stuart Sierra changed it to not waiting on Rich on 17/Feb/2012 when he noted the patch didn't apply cleanly. Latest patch clj-700-patch3.txt does apply cleanly, but doesn't change the approach used since the time Stuart Halloway's concern was raised. Should it be marked as waiting on Rich again? Something else?

Comment by Stuart Halloway [ 08/Jun/12 12:44 PM ]

Patch 4 incorporates patch 3, and brings it up to date on hashing (i.e. uses hasheq).

Comment by Andy Fingerhut [ 08/Jun/12 12:52 PM ]

Removed clj-700-patch3.txt in favor of Stuart Halloway's improved clj-700-patch4.txt dated June 8, 2012.

Comment by Andy Fingerhut [ 18/Jun/12 3:06 PM ]

clj-700-patch5.txt dated June 18, 2012 is the same as Stuart Halloway's clj-700-patch4.txt, except for context lines that have changed in Clojure master since Stuart's patch was created. clj-700-patch4.txt no longer applies cleanly.

Comment by Andy Fingerhut [ 19/Aug/12 4:47 AM ]

Adding clj-700-patch6.txt, which is identical to Stuart Halloway's clj-700-patch4.txt, except that it applies cleanly to latest master as of Aug 19, 2012. Note that as described above, you must use the --keep-cr option to 'git am' when applying this patch for it to succeed. Removing clj-700-patch5.txt, since it no longer applies cleanly.

Comment by Stuart Sierra [ 24/Aug/12 1:08 PM ]

Patch fails as of commit 1c8eb16a14ce5daefef1df68d2f6b1f143003140

Comment by Andy Fingerhut [ 24/Aug/12 1:53 PM ]

Which patch did you try, and what command did you use? I tried applying clj-700-patch6.txt to the same commit, using the following command, and it applied, albeit with the warning messages shown:

% git am --keep-cr -s < clj-700-patch6.txt
Applying: Refactor of some of the clojure .java code to fix CLJ-700.
/Users/jafinger/clj/latest-clj/clojure/.git/rebase-apply/patch:29: trailing whitespace.
public interface Associative extends IPersistentCollection, IAssociative{
warning: 1 line adds whitespace errors.
Applying: more CLJ-700: refresh to use hasheq

Note the --keep-cr option, which is necessary for this patch to succeed. It is recommended in the "Screening Tickets" section of the JIRA workflow wiki page here: http://dev.clojure.org/display/design/JIRA+workflow

Comment by Andy Fingerhut [ 28/Aug/12 5:48 PM ]

Presumptuously changing Approval from Incomplete back to None, since the latest patch does apply cleanly if the --keep-cr option is used. It was in Screened state recently, but I'm not so presumptuous as to change it to Screened

Comment by Alex Miller [ 19/Aug/13 12:26 PM ]

I think through a series of different hands on this ticket it got knocked way back in the list. Re-marking vetted as it's previously been all the way up through screening. Should also keep an eye on CLJ-787 as it may have some collisions with this one.

Comment by Andy Fingerhut [ 08/Nov/13 10:14 AM ]

clj-700-7.diff is identical to clj-700-patch6.txt, except it applies cleanly to latest master. Only some lines of context in a test file have changed.

When I say "applies cleanly", I mean that there is one warning when using the proper "git am" command from the dev wiki page. This is because one line replaced in Associative.java has a CR/LF at the end of the line, because all lines in that file do.

Comment by Herwig Hochleitner [ 17/Feb/14 9:54 AM ]

Since clojure 1.5, contains? throws an IllegalArgumentException on transients.
In 1.6.0-beta1, transients are no longer marked as alpha.

Does this mean, that we won't be able to distinguish between a nil value and no value on a transient?

Comment by Stuart Halloway [ 27/Jun/14 10:20 AM ]

Request for someone to (1) update patch to apply cleanly, and (2) summarize approach so I don't have to read through the comment history.

Comment by Andy Fingerhut [ 27/Jun/14 11:02 AM ]

The latest patch is clj-700-7.diff dated Nov 8, 2013. I believe it is impossible to create a patch that applies any more cleanly using git for source files that have carriage returns in them, which at least one modified source file does. Here is the command I used on latest Clojure master as of today (Jun 27 2014), which is the same as that of March 25 2014:

% git am -s --keep-cr --ignore-whitespace < ~/clj/patches/clj-700-7.diff 
Applying: Refactor of some of the clojure .java code to fix CLJ-700.
/Users/admin/clj/latest-clj/clojure/.git/rebase-apply/patch:29: trailing whitespace.
public interface Associative extends IPersistentCollection, IAssociative{
warning: 1 line adds whitespace errors.
Applying: more CLJ-700: refresh to use hasheq

If you want a patch that doesn't have the 'trailing whitespace' warning in it, I think someone would have to commit a change that removed the carriage returns from file Associative.java. If you want such a patch, let me know and we can remove all of them from every source file and be done with this annoyance.

Comment by Andy Fingerhut [ 27/Jun/14 11:19 AM ]

Updated description to contain a copy of only those comments that seemed 'interesting'. Most comments have simply been "attached an updated patch that applies cleanly", or "changed the state of this ticket for reason X".

Comment by Alex Miller [ 27/Jun/14 1:19 PM ]

Looks like Andy did as requested, moving back to Screenable.

Comment by Andy Fingerhut [ 29/Aug/14 4:27 PM ]

Patch clj-700-7.diff dated Nov 8 2013 no longer applied cleanly to latest master after some commits were made to Clojure on Aug 29, 2014. It did apply cleanly before that day.

I have not checked how easy or difficult it might be to update this patch.

Comment by Andy Fingerhut [ 01/Sep/14 3:59 AM ]

Patch clj-700-8.diff dated Sep 1 2014 is identical to clj-700-7.diff, except that it applies "cleanly" to latest master, by which I mean it applies as cleanly as I think it is possible to apply for a git patch to a file with carriage return/line feed line endings, as one of the modified files still does.

Comment by Alex Miller [ 17/Dec/14 3:12 PM ]

Added new patch with alternate approach that just makes RT know about transients instead of refactoring the class hierarchy.


In some ways I think the class hierarchy refactoring is due, but I'm not totally on board with all the changes in those patches and it has impacts on collections outside Clojure itself that are hard to reason about.

Generated at Mon Dec 22 04:02:37 CST 2014 using JIRA 4.4#649-r158309.